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1 Prevalence Analysis Details

In this section, we provide additional details on our prevalence
analysis regarding the chosen papers and the author survey.

Distribution of selected papers. For the prevalence analy-
sis, we have selected papers published in the last ten years at
the leading four security conferences. Figure 1 shows a break-
down of these papers by year of publication. While the papers
date back to 2011, the majority of work has been published
between 2015 and 2019.
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Figure 1: Distribution of papers per year for the 30 papers in our analysis.

2 Impact Analysis Details

This section provides additional information about the experi-
ments in Section 4 of the paper.

2.1 Mobile Malware Detection
Here we describe the additional dataset used in our experi-
ments and detail the experimental setup considered in §4.1 of
the paper.

Analysis of the Drebin dataset. In addition to AndroZoo [2],
we also analyze the meta information of the DREBIN [3]
dataset that has been provided to us by the authors of the paper.
Interestingly, we find that 76.2 % of the benign data has been
collected from GooglePlay, while the fraction of malicious
data is only 4.6 %. Although the origins for the majority of
malicious samples is unknown (86.9 %), our findings strongly
suggest the presence of a sampling bias in this dataset as well.

Experimental setup. While we have reimplemented the fea-
ture extraction of DREBIN [3], for OPSEQS [9] we use the

publicly available program code as provided by McLaugh-
lin et al. [9] to extract opcode n-grams. Using the extracted
features, we represent each app as a binary vector and train
a linear SVM [5] on the dataset. We use 75 % of the data
for training and the remaining 25 % for testing. To select
good hyperparameters for our classifiers, we perform a grid
search on the training data for C = {10−2,10−1, ...,102} and
n = {2, 3, 4} using 5-fold cross validation, where n refers
to the length of the opcode n-grams. Finally, we assess the
performance of the best model on the test data. We repeat the
experiments ten times and average the results.

2.2 Vulnerability Discovery
We give additional information on the model and the evalua-
tion methodology used for our experiments on vulnerability
discovery in §4.2 of the paper.

Models and preprocessing. For VulDeePecker [8], we train
a neural network consisting of a bidirectional LSTM layer
with 300 units that is followed by a dropout layer with a prob-
ability of 0.5 and a dense layer of size 2 employing a softmax
non-linearity. We use the Adam optimizer [7] with a batch
size of 64 and train for 10 epochs (the network begins to over-
fit the training set after ∼6 epochs). These hyperparameters
for the architecture and training are adopted from the work
of Li et al. [8] and not tuned explicitly.

The code snippets are preprocessed as described by Li et al.
[8] and a word2vec [10] embedding of 200 dimensions is
trained for 100 iterations to achieve vector representations of
the generic code tokens. Word2vec models are solely deter-
mined based on the training data. Unknown tokens that occur
at test time are replaced with a vector of zeros—the same
value that is used to pad code snippets shorter than 50 tokens.

For the linear SVM, we use a regularization cost of C = 1.0
and token-level n-grams extracted from the generic tokens of
the training data. The 3-grams obtained by this approach are
used as input for the AutoSklearn framework [6]. Here we
optimize the bounded area under ROC curve (FPR < 0.05)
and limit the number of models in the ensemble to 50.
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Performance evaluation. To compare the performance of
VulDeePecker and the baseline models, we split the data into
a randomly chosen training set (80 %), validation set (10 %),
and test set (10 %) for 10 trials. All methods learn on the
training set only and we use the model that performs best on
the validation set. Finally, we compute ROC curves on the test
data also containing unseen data instances and average the
results over the 10 individual trials. The results are presented
in Table 4 of §4.2. Note that picking an optimal threshold
from these ROC curves is a form of data snooping (P3). In
this case, however, we only use the ROC curves to compare
the three classifiers on unseen data.

2.3 Authorship Attribution
Here we provide further intuition on the problem of artifacts
in datasets for authorship attribution and describe the experi-
mental setup used in §4.3 in more detail.

Artifact examples. Figure 2 exemplifies how attribution
methods exploit features from copied code. The selected au-
thor copies both arrays in all files but never uses them. It turns
out that the AST feature ‘1’ is one of the most important fea-
tures for classifying this author. However, these copied arrays
are unrelated to the programming task and thus only loosely
related to coding style in practice.

1 constexpr int dx[] = {-1, 0, 1, 0, 1, 1, -1, -1};
2 constexpr int dy[] = {0, -1, 0, 1, 1, -1, 1, -1};

Figure 2: Artifact example from the code GCJ dataset. Arrays are unused,
but present in all files by the same author.

Experimental setup. For our evaluation of the attribution
methods by Caliskan et al. [4] and Abuhamad et al. [1], we
use a publicly available reimplementation [12] built on top
of Clang. We also use a stratified and grouped 8-fold cross-
validation where the dataset is divided into seven challenges
for training and one challenge for testing, respectively. To
select hyperparameters in each fold, we further perform a grid
search on the training set using 3-fold stratified and grouped
cross validation. We perform feature selection and a tf-idf
transformation where we derive the parameters from the re-
spective training set. Finally, we measure the accuracy of the
best performing model on the test set. We report results for all
eight folds in Figure 7 of §4.3, as the difficulty of attribution
can vary across the GCJ challenges.

Reproducing the setup of Caliskan et al. [4], we use a
random forest with layout, lexical and syntactical features.
For Abuhamad et al. [1], we use the originally proposed fea-
tures consisting of word n-grams, but apply a random forest
only rather than a combination of recurrent neural network
and random forest. We find that this leads to a comparable
accuracy and has the benefit of a simpler analysis of each
features’ contribution to the classification.

Furthermore, we implement small linter tools in Clang that
remove the following five groups of unused code in our ex-
periments: functions, local and global declarations, typedefs,
records, and headers.

2.4 Network Intrusion Detection

We provide details on the experimental setup as used for the
case study on network intrusion detection described in §4.4
of the paper.

Experimental setup. For training the ensemble of autoen-
coders, we follow the procedure of KITSUNE [11]. The
115 features are derived from seven damped incremental
statistics describing packet relationships of five time win-
dows of up to a one minute interval. To determine a suitable
number of autoencoders, we apply a hierarchical clustering
to the first 5,000 examples from the feature set, resulting in a
maximum of m = 10 inputs per autoencoder. Overall, this cor-
responds to 12 autoencoders in parallel. The outputs of these
autoencoders are passed to another, final autoencoder which
operates as the anomaly detector. The root mean squared error
(RMSE) representing the autoencoders’ reconstruction error
is output for each packet individually. Consequently, we ap-
ply a threshold to the RMSE values, depending on how many
false positives can be tolerated.

For both methods, the first 50,000 packets are used for
training and the remaining 714,136 packets for testing. This
corresponds to the first 30.5 and 80.4 minutes of the network
packet capture, respectively.
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